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Supplementary Figures 13 

 14 

Supplementary Figure 1. Number of Sequences Per Species Per MSA Box plot of 15 

major taxonomic groups. 16 
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 25 

Supplementary Figure 2. Cancer Driver Phylogeny Through Prokaryotes Summary 26 

of driver phylogeny. Each row represents one species, each column one driver. Sites 27 

harboring multiple drivers appear multiple times. Colors correspond to mode residues 28 

over all sequences from each species in each site: white=absent from MSA, blue=gap, 29 

green=human reference residue, red=driver, gray=any other residue. Species are 30 

ordered by taxonomy, and within labelled clades by appearance within # of MSA. Sites 31 

are ordered by harboring gene phylogenetic depth. Rows are followed by box plots of 32 

number of species within each clade observed across MSA where that clade is 33 

represented. Whiskers are at 2/98%. For a focused view on Eukaryotes see Fig. 1F/H. 34 
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 37 

Supplementary Figure 3. Available Protist Phylogeny Few protists appear across all 38 

MSA. Most are in Alveolata. Members of Alveolata are particularly unevenly distributed 39 

across the MSA with only 34% of total species present in any MSA found in any given 40 

MSA (Percent Species per Residue). 41 
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 43 

 44 

Supplementary Figure 4. Vertebrate Homogeneity Binned By Mutation Frequency 45 

Median vertebrate homogeneity of COSMIC mutation nbhds (+/- 3sites) and sites 46 

logarithmically binned by mutation count (number of tumors). 25th-75th percentiles 47 

shaded. 48 
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Supplementary Figure 5. Number of Drivers with Given Mutation Frequency 50 

#Driver genes (84 total) with at least 1 missense mutation of specified cosmic mutation 51 

frequency. 52 
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 53 

Supplementary Figure 6. Number of Drivers Designated per Gene 54 
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 55 

Supplementary Figure 7. Maximum Identity Score Against PDB Structures All sites 56 

in driver genes with driver sites outlined in black. Global Score vs. driver-containing 57 

Local Score. Global Score ≤ Local Score, see Methods; Fig. S8 for details. 58 
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 59 

Supplementary Figure 8. Distribution of Local Scores for PDB Structures 60 

Encompassing Drivers and Compensatory Ensembles Vertical line at threshold 61 

score of 1.9. 62 

 63 

 64 

 65 

 66 
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 67 

Supplementary Figure 9. Reduced MSA for driver gene RBM10 Driver E119D and 68 

compensator S398N highlighted. The driver neighborhood in the MSA is almost 69 

exclusively composed of gaps outside of mammalian sequences. Within mammals there 70 

are multiple isoforms of RBM10 about half of which have gaps in the driver 71 

neighborhood as well. The compensator residue 398N is ancestral transitioning to the 72 

human reference residue 398S at siimiformes and the driver is relatively common 73 

among mammals, approaching 15% among glires suggesting the driver residue may 74 

only be deleterious among higher primates due to the absence of the compensator 75 

S398N. 76 
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 78 

Supplementary Figure 10. Detailed View of KEAP1 Structure 79 

 80 

Supplementary Figure 11. Detailed View of GNAS Structure 81 
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 82 

Supplementary Figure 12. Detailed View of ERBB2 Structure 83 

 84 

 85 

Supplementary Figure 13. Detailed View of EPHA2 Structure 86 
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Supplementary Figure 14. Detailed View of CTCF Structure 88 

 89 

Supplementary Figure 15. Detailed View of BRAF Structure 90 

 91 
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 92 

Supplementary Figure 16. Detailed View of RAC1 Structure 93 

 94 
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Supplementary Figure 17. Detailed View of PIK3CA Structure 96 

 97 
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 98 

Supplementary Figure 18. Detailed View of NRAS Structure 99 

 100 

Supplementary Figure 19. Structure of PTPN11 with E139D mutation, PDB ID: 101 

4NWG 102 

 103 

 104 
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 108 

Supplementary Figure 20. Differing Prevalence Among Tumors Between Drivers 109 

with Putative Compensators and those Without. For each driver, given a cutoff, C, 110 

mutations with high association scores (see Methods: Calculation of Association Score 111 

for Pairs of Mutations) paired with that driver among both species and tumors were 112 

identified as putative compensators. The 434 drivers considered were then divided into 113 

two ensembles based on the identification of at least one putative compensator. Drivers 114 

with at least one such mutation identified are more frequently observed (total number of 115 

tumors, both compensated and uncompensated) among tumors insensitive to the 116 

threshold used. Note1: Drivers with a higher overall count are more likely to support 117 

evidence of compensation simply because there are greater opportunities for 118 

statistically significant associations with a larger number of observations. Note2: Many 119 

putative compensators are observed in the minority of tumors harboring the associated 120 

driver and such a driver is placed in the “compensated” ensemble even if that driver is 121 

more often observed “uncompensated”. 122 
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 123 

Supplementary Figure 21. Illustration of Leaf-Weighting Procedure Branch lengths 124 

are labelled Li. 125 

 126 

 127 

 128 

 129 



18 
 

 130 

Supplementary Figure 22. Differing Prevalence Among Species Between Drivers 131 

with Compensatory Ensembles and those Without All drivers which appear in at 132 

least four leaves were divided into two groups: those for which a compensatory 133 

ensemble was constructed, and those without. Drivers without a compensatory 134 

ensemble tend to be more frequently observed in the MSA than those with a 135 

compensatory ensemble. 136 
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 137 

Supplementary Figure 23. Cartoon of Driver/Compensatory Ensemble 138 
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